$L^{p}$ BOUNDS FOR MARCINKIEWICZ INTEGRALS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lp BOUNDS FOR SINGULAR INTEGRALS AND MAXIMAL SINGULAR

Convolution type Calderr on-Zygmund singular integral operators with rough kernels p.v. (x)=jxj n are studied. A condition on implying that the corresponding singular integrals and maximal singular integrals map L p ! L p for 1 < p < 1 is obtained. This condition is shown to be diierent from the condition 2 H 1 (S n?1).

متن کامل

On Weighted Inequalities for Parametric Marcinkiewicz Integrals

We establish a weighted Lp boundedness of a parametric Marcinkiewicz integral operator ρ Ω,h if Ω is allowed to be in the block space B (0,−1/2) q (Sn−1) for some q > 1 and h satisfies a mild integrability condition. We apply this conclusion to obtain the weighted Lp boundedness for a class of the parametric Marcinkiewicz integral operators ∗,ρ Ω,h,λ and ρ Ω,h,S related to the Littlewood-Paley ...

متن کامل

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

Rough Marcinkiewicz Integrals On Product Spaces

In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.

متن کامل

Marcinkiewicz integrals along subvarieties on product domains

Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2003

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091501000682